Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Multiprocessing

A multiprocessing computer contains two or more processors that simultaneously execute sequences of instructions. The processors in such a system typically share access to system resources, such as main memory and peripheral devices. The processors in a multiprocessing system may be of the same architecture, or individual processors may be of different architectures to support unique system requirements. Systems in which all processors are treated as equal are referred to as symmetric multiprocessing systems. Devices that contain multiple processors within a single integrated circuit package are called multi-core processors.

At the level of the operating system scheduler, a symmetric multiprocessing environment simply provides more processors for use in thread scheduling. In such systems, the scheduler treats additional processors as resources when assigning threads for execution.

In a well-designed symmetric multiprocessing system, throughput can approach...