Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Exercises

  1. Rate monotonic scheduling (RMS) is an algorithm for assigning thread priorities in preemptive, hard, real-time applications in which threads execute periodically.

    RMS assigns the highest priority to the thread with the shortest execution period, the next-highest priority to the thread with the next-shortest execution period, and so on. An RMS system is schedulable, meaning all tasks are guaranteed to meet their deadlines (assuming no inter-thread interactions or other activities such as interrupts cause processing delays) if the following condition is met:

    This formula represents the maximum fraction of available processing time that can be consumed by n threads. In this formula, Ci is the maximum execution time required for thread i, and Ti is the execution period of thread i.

    Is the following system composed of three threads schedulable?

    Thread

    ...