Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Chapter 7: Processor and Memory Architectures

Exercise 1

A 16-bit embedded processor has separate memory regions for code and data. Code is stored in flash memory and modifiable data is stored in RAM. Some data values, such as constants and initial values for RAM data items, are stored in the same flash memory region as the program instructions. RAM and ROM reside in the same address space. Which of the processor architectures discussed in Chapter 7, Processor and Memory Architectures, best describes this processor?

Answer

Because the code and data are located in the same address space, this is a von Neumann architecture.

The fact that the code and some data items are stored in ROM and other data items reside in RAM is not relevant to determining the architecture category.

Exercise 2

The processor described in Exercise 1 has memory security features that prevent executed code from modifying program instruction memory. The processor uses physical addresses to...