Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Autonomous vehicle computing architecture

Figure 16.2 summarizes the hardware components and the processing stages in an autonomous driving system based on the current state of technology, as described in this chapter.

Figure 16.2: Components and processes of an autonomous driving system

We introduced sensor technologies that gather information about the state of the vehicle and its surroundings. This information flows into a Sensing process, which receives data from the sensors, validates that each sensor is performing properly, and prepares the data for perception. The process of Perceiving takes raw sensor data and extracts useful information from it, such as identifying objects in video images and determining their location and velocity. With an accurate understanding of the vehicle’s state and all relevant surrounding objects, the Deciding process performs high-level navigation functions, like selecting which route to take to the destination, as well as low...