Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Floating-point arithmetic

Modern processors usually support integer data types in widths of 8, 16, 32, and 64 bits. Some smaller embedded processors may not directly support 64-bit or even 32-bit integers, while more sophisticated devices may support 128-bit integers. Integer data types are appropriate for use in a wide range of applications, but many areas of computing, particularly in the fields of science, engineering, and navigation, require the ability to represent fractional numbers with a high degree of accuracy.

As a simple example of the limitations of integer mathematics, suppose you need to divide 5 by 3. On a computer restricted to using integers, you can perform an integer calculation of this expression as follows, in C++:

#include <iostream>
int main(void)
{
    int a = 5;
    int b = 3;
    int c = a / b;
    std::cout << "c = " << c << std::endl;
    return 0;
}

This program produces the following output:

c = 1
...