Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Exercises

  1. Rearrange the circuit in Figure 2.5 to convert the AND gate to a NAND gate. Hint: there is no need to add or remove components.
  2. Create a circuit implementation of an OR gate by modifying the circuit in Figure 2.5. Wires, transistors, and resistors can be added as needed.
  3. Search the internet for free VHDL development software suites that include a simulator. Get one of these suites, set it up, and build any simple demo projects that come with the suite to ensure it is working properly.
  4. Using your VHDL tool set, implement the 4-bit adder using the code listings presented in this chapter.
  5. Add test driver code (search the internet for VHDL testbench to find examples) to your 4-bit adder to drive it through a limited set of input sets and verify that the outputs are correct.
  6. Expand the test driver code and verify that the 4-bit adder produces correct results for all possible combinations of inputs.

Join our community Discord space...