Book Image

Learning Apache Cassandra - Second Edition

Book Image

Learning Apache Cassandra - Second Edition

Overview of this book

Cassandra is a distributed database that stands out thanks to its robust feature set and intuitive interface, while providing high availability and scalability of a distributed data store. This book will introduce you to the rich feature set offered by Cassandra, and empower you to create and manage a highly scalable, performant and fault-tolerant database layer. The book starts by explaining the new features implemented in Cassandra 3.x and get you set up with Cassandra. Then you’ll walk through data modeling in Cassandra and the rich feature set available to design a flexible schema. Next you’ll learn to create tables with composite partition keys, collections and user-defined types and get to know different methods to avoid denormalization of data. You will then proceed to create user-defined functions and aggregates in Cassandra. Then, you will set up a multi node cluster and see how the dynamics of Cassandra change with it. Finally, you will implement some application-level optimizations using a Java client. By the end of this book, you'll be fully equipped to build powerful, scalable Cassandra database layers for your applications.
Table of Contents (14 chapters)

Why not relational databases?


Relational database systems (RDBMS) have been the primary data store for enterprise applications for 20 years. Lately, NoSQL databases have been picking up a lot of steam, and businesses are slowly seeing a shift towards non-relational databases. There are a few reasons why relational databases don't seem like a good fit for modern big data web applications:

  • Relational databases are not designed for clustered solutions. There are some solutions that shard data across servers, but these are fragile, complex, and generally don't work well.

Note

Sharding solutions implemented by RDBMS are as follows:

  • MySQL's product MySQL cluster provides clustering support which adds many capabilities of non-relational systems. It is actually an NoSQL solution that integrates with the MySQL relational database. It partitions the data onto multiple nodes, and the data can be accessed via different APIs.
  • Oracle provides a clustering solution, Oracle RAC, which involves multiple nodes running an Oracle process accessing the same database files. This creates a single point of failure as well as resource limitations in accessing the database itself.
  • They are not a good fit for current hardware and architectures. Relational databases are usually scaled up using larger machines with more powerful hardware and maybe clustering and replication among a small number of nodes. Their core architecture is not a good fit for commodity hardware and thus doesn't work with scale-out architectures.

Note

Scale-out versus scale-up architecture:

  • Scaling out means adding more nodes to a system, such as adding more servers to a distributed database or filesystem. This is also known as horizontal scaling.
  • Scaling up means adding more resources to a single node within the system, such as adding more CPU, memory, or disks to a server. This is also known as vertical scaling.