Book Image

Deep Reinforcement Learning Hands-On

By : Maxim Lapan
Book Image

Deep Reinforcement Learning Hands-On

By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
Table of Contents (23 chapters)
Deep Reinforcement Learning Hands-On
Other Books You May Enjoy

GA tweaks

In the Deep Neuroevolution paper [2], the authors checked two tweaks to the basic GA algorithm. The first, with the name deep GA, aimed to increase the scalability of the implementation and the second, called novelty search, was an attempt to replace the reward objective with a different metric of the episode. In the following example, we'll implement the first improvement, while the second one is left as an optional exercise.

Deep GA

Being a gradient-free method, GA is potentially even more scalable than ES methods in terms of speed, with more CPUs involved in the optimization. However, the simple GA algorithm that we've seen has the similar bottleneck as ES methods: policy parameters have to be exchanged between the workers. In the above-mentioned paper, the authors proposed a trick similar to the shared seed approach but taken to an extreme. They called it deep GA, and at its core, the policy parameters are represented as a list of random seeds used to create this particular policy...