Book Image

Machine Learning Engineering on AWS

By : Joshua Arvin Lat
Book Image

Machine Learning Engineering on AWS

By: Joshua Arvin Lat

Overview of this book

There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you’ll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You’ll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements.
Table of Contents (19 chapters)
1
Part 1: Getting Started with Machine Learning Engineering on AWS
5
Part 2:Solving Data Engineering and Analysis Requirements
8
Part 3: Diving Deeper with Relevant Model Training and Deployment Solutions
11
Part 4:Securing, Monitoring, and Managing Machine Learning Systems and Environments
14
Part 5:Designing and Building End-to-end MLOps Pipelines

Scheduled monitoring with SageMaker Model Monitor

If you have been working in the data science and ML industry for quite some time, you probably know that an ML model’s performance after deployment is not guaranteed. Deployed models in production must be monitored in real time (or near-real time) so that we can potentially replace the deployed model and fix any issues once any drift or deviation from the expected set of values is detected:

Figure 8.9 – Analyzing captured data and detecting violations using Model Monitor

In the preceding diagram, we can see that we can process and analyze the captured data through a monitoring (processing) job. This job is expected to generate an automated report that can be used to analyze the deployed model and the data. At the same time, any detected violations are flagged and reported as part of the report.

Note

Let’s say that we have trained an ML model that predicts a professional’s salary...