Book Image

Machine Learning Engineering on AWS

By : Joshua Arvin Lat
Book Image

Machine Learning Engineering on AWS

By: Joshua Arvin Lat

Overview of this book

There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you’ll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You’ll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements.
Table of Contents (19 chapters)
1
Part 1: Getting Started with Machine Learning Engineering on AWS
5
Part 2:Solving Data Engineering and Analysis Requirements
8
Part 3: Diving Deeper with Relevant Model Training and Deployment Solutions
11
Part 4:Securing, Monitoring, and Managing Machine Learning Systems and Environments
14
Part 5:Designing and Building End-to-end MLOps Pipelines

Machine Learning Pipelines with Kubeflow on Amazon EKS

In Chapter 9, Security, Governance, and Compliance Strategies, we discussed a lot of concepts and solutions that focus on the other challenges and issues we need to worry about when dealing with machine learning (ML) requirements. You have probably realized by now that ML practitioners have a lot of responsibilities and work to do outside model training and deployment! Once a model gets deployed into production, we would have to monitor the model and ensure that we are able to detect and manage a variety of issues. In addition to this, ML engineers might need to build ML pipelines to automate the different steps in the ML life cycle. To ensure that we reliably deploy ML models in production, as well as streamline the ML life cycle, it is best that we learn and apply the different principles of machine learning operations (MLOps). With MLOps, we will make use of the tried-and-tested tools and practices from software engineering...