Book Image

Machine Learning Engineering on AWS

By : Joshua Arvin Lat
Book Image

Machine Learning Engineering on AWS

By: Joshua Arvin Lat

Overview of this book

There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you’ll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You’ll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements.
Table of Contents (19 chapters)
1
Part 1: Getting Started with Machine Learning Engineering on AWS
5
Part 2:Solving Data Engineering and Analysis Requirements
8
Part 3: Diving Deeper with Relevant Model Training and Deployment Solutions
11
Part 4:Securing, Monitoring, and Managing Machine Learning Systems and Environments
14
Part 5:Designing and Building End-to-end MLOps Pipelines

How ML engineers can get the most out of AWS

There are many services and capabilities in the AWS platform that an ML engineer can choose from. Professionals who are already familiar with using virtual machines can easily spin up EC2 instances and run ML experiments using deep learning frameworks inside these virtual private servers. Services such as AWS Glue, Amazon EMR, and AWS Athena can be utilized by ML engineers and data engineers for different data management and processing needs. Once the ML models need to be deployed into dedicated inference endpoints, a variety of options become available:

Figure 1.2 – AWS machine learning stack

Figure 1.2 – AWS machine learning stack

As shown in the preceding diagram, data scientists, developers, and ML engineers can make use of multiple services and capabilities from the AWS machine learning stack. The services grouped under AI services can easily be used by developers with minimal ML experience. To use the services listed here, all we need would be some experience working with data, along with the software development skills required to use SDKs and APIs. If we want to quickly build ML-powered applications with features such as language translation, text-to-speech, and product recommendation, then we can easily do that using the services under the AI Services bucket. In the middle, we have ML services and their capabilities, which help solve the more custom ML requirements of data scientists and ML engineers. To use the services and capabilities listed here, a solid understanding of the ML process is needed. The last layer, ML frameworks and infrastructure, offers the highest level of flexibility and customizability as this includes the ML infrastructure and framework support needed by more advanced use cases.

So, how can ML engineers make the most out of the AWS machine learning stack? The ability of ML engineers to design, build, and manage ML systems improves as they become more familiar with the services, capabilities, and tools available in the AWS platform. They may start with AI services to quickly build AI-powered applications on AWS. Over time, these ML engineers will make use of the different services, capabilities, and infrastructure from the lower two layers as they become more comfortable dealing with intermediate ML engineering requirements.