Book Image

Machine Learning Engineering on AWS

By : Joshua Arvin Lat
Book Image

Machine Learning Engineering on AWS

By: Joshua Arvin Lat

Overview of this book

There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you’ll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You’ll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements.
Table of Contents (19 chapters)
1
Part 1: Getting Started with Machine Learning Engineering on AWS
5
Part 2:Solving Data Engineering and Analysis Requirements
8
Part 3: Diving Deeper with Relevant Model Training and Deployment Solutions
11
Part 4:Securing, Monitoring, and Managing Machine Learning Systems and Environments
14
Part 5:Designing and Building End-to-end MLOps Pipelines

Running our first pipeline with SageMaker Pipelines

In Chapter 1, Introduction to ML Engineering on AWS, we installed and used AutoGluon to train multiple ML models (with AutoML) inside an AWS Cloud9 environment. In addition to this, we performed the different steps of the ML process manually using a variety of tools and libraries. In this chapter, we will convert these manually executed steps into an automated pipeline so that all we need to do is provide an input dataset and the ML pipeline will do the rest of the work for us (and store the trained model in a model registry).

Note

Instead of preparing a custom Docker container image to use AutoGluon for training ML models, we will use the built-in AutoGluon-Tabular algorithm instead. With a built-in algorithm available for use, all we need to worry about would be the hyperparameter values and the additional configuration parameters we will use to configure the training job.

That said, this section is divided into two parts...