Book Image

Machine Learning Engineering on AWS

By : Joshua Arvin Lat
Book Image

Machine Learning Engineering on AWS

By: Joshua Arvin Lat

Overview of this book

There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you’ll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You’ll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements.
Table of Contents (19 chapters)
1
Part 1: Getting Started with Machine Learning Engineering on AWS
5
Part 2:Solving Data Engineering and Analysis Requirements
8
Part 3: Diving Deeper with Relevant Model Training and Deployment Solutions
11
Part 4:Securing, Monitoring, and Managing Machine Learning Systems and Environments
14
Part 5:Designing and Building End-to-end MLOps Pipelines

What is expected from ML engineers?

ML engineering involves using ML and software engineering concepts and techniques to design, build, and manage production-level ML systems, along with pipelines. In a team working to build ML-powered applications, ML engineers are generally expected to build and operate the ML infrastructure that’s used to train and deploy models. In some cases, data scientists may also need to work on infrastructure-related requirements, especially if there is no clear delineation between the roles and responsibilities of ML engineers and data scientists in an organization.

There are several things an ML engineer should consider when designing and building ML systems and platforms. These would include the quality of the deployed ML model, along with the security, scalability, evolvability, stability, and overall cost of the ML infrastructure used. In this book, we will discuss the different strategies and best practices to achieve the different objectives of an ML engineer.

ML engineers should also be capable of designing and building automated ML workflows using a variety of solutions. Deployed models degrade over time and model retraining becomes essential in ensuring the quality of deployed ML models. Having automated ML pipelines in place helps enable automated model retraining and deployment.

Important note

If you are excited to learn more about how to build custom ML pipelines on AWS, then you should check out the last section of this book: Designing and building end-to-end MLOps pipelines. You should find several chapters dedicated to deploying complex ML pipelines on AWS!