Book Image

Machine Learning Engineering on AWS

By : Joshua Arvin Lat
Book Image

Machine Learning Engineering on AWS

By: Joshua Arvin Lat

Overview of this book

There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you’ll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You’ll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements.
Table of Contents (19 chapters)
1
Part 1: Getting Started with Machine Learning Engineering on AWS
5
Part 2:Solving Data Engineering and Analysis Requirements
8
Part 3: Diving Deeper with Relevant Model Training and Deployment Solutions
11
Part 4:Securing, Monitoring, and Managing Machine Learning Systems and Environments
14
Part 5:Designing and Building End-to-end MLOps Pipelines

Security, Governance, and Compliance Strategies

In the first eight chapters of this book, we focused on getting our machine learning (ML) experiments and deployments working in the cloud. In addition to this, we were able to analyze, clean, and transform several sample datasets using a variety of services. For some of the hands-on examples, we made use of synthetically generated datasets that are relatively safe to work with from a security standpoint (since these datasets do not contain personally identifiable information (PII)). We were able to accomplish a lot of things in the previous chapters, but it is important to note that getting the data engineering and ML engineering workloads running in our AWS account is just the first step! Once we need to work on production-level ML requirements, we have to worry about other challenges concerning the security, governance, and compliance of the ML systems and processes. To solve these challenges, we have to use a variety of solutions...