Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By : Tarek Amr
Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By: Tarek Amr

Overview of this book

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
Table of Contents (18 chapters)
1
Section 1: Supervised Learning
8
Section 2: Advanced Supervised Learning
13
Section 3: Unsupervised Learning and More

Summary

When dealing with a classification or a regression problem, we tend to start by thinking about the features we should include in our models. Nonetheless, it is often that the key to the solution lies in the target values. As we have seen in this chapter, rescaling our regression target can help us use a simpler model. Furthermore, calibrating the probabilities given by our classifiers may quickly give a boost to our accuracy scores and help us quantify our uncertainties. We also learned how to deal with multiple targets by writing a single estimator to predict multiple outputs at once. This helps to simplify our code and allows the estimator to use the knowledge it learns from one label to predict the others.

It is common in real-life classification problems that classes are imbalanced. When detecting fraudulent incidents, the majority of your data is usually comprised of non-fraudulent cases. Similarly, for problems such as who would click on your advertisement...