Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By : Tarek Amr
Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By: Tarek Amr

Overview of this book

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
Table of Contents (18 chapters)
1
Section 1: Supervised Learning
8
Section 2: Advanced Supervised Learning
13
Section 3: Unsupervised Learning and More

Outlier and novelty detection using LOF

"Madness is rare in individuals – but in groups, parties, nations, and ages, it is the rule."
– Friedrich Nietzsche

LOF takes an opposite approach to Nietzsche's—it compares the density of a sample to the local densities of its neighbors. A sample existing in a low-density area compared to its neighbors is considered an outlier. Like any other neighbor-based algorithms, we have parameters to specify the number of neighbors to consider (n_neighbors) and the distance metric to use to find the neighbors (metric and p). By default, the Euclidean distance is used—that is, metric='minkowski' and p=2. You can refer to Chapter 5, Image Processing with Nearest Neighbors, for more information about the available distance metrics. Here is how we useLocalOutlierFactor for outlier detection, using 50 neighbors and its default distance metric:

from sklearn.neighbors import LocalOutlierFactor...