Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By : Tarek Amr
Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By: Tarek Amr

Overview of this book

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
Table of Contents (18 chapters)
1
Section 1: Supervised Learning
8
Section 2: Advanced Supervised Learning
13
Section 3: Unsupervised Learning and More

Summary

Decision trees are intuitive algorithms that are capable of performing classification and regression tasks. They allow users to print out their decision rules, which is a plus when communicating the decisions you made to business personnel and non-technical third parties. Additionally, decision trees are easy to configure since they have a limited number of hyperparameters. The two main decisions you need to make when training a decision tree are your splitting criterion and how to control the growth of your tree to have a good balance between overfitting and underfitting. Your understanding of the limitations of the tree's decision boundaries is paramount in deciding whether the algorithm is good enough for the problem at hand.

In this chapter, we looked at how decision trees learn and used them to classify a well-known dataset. We also learned about the different evaluation metrics and how the size of our data affects our confidence in a model's accuracy...