Book Image

Learn Python Programming, 3rd edition - Third Edition

By : Fabrizio Romano, Heinrich Kruger
5 (1)
Book Image

Learn Python Programming, 3rd edition - Third Edition

5 (1)
By: Fabrizio Romano, Heinrich Kruger

Overview of this book

Learn Python Programming, Third Edition is both a theoretical and practical introduction to Python, an extremely flexible and powerful programming language that can be applied to many disciplines. This book will make learning Python easy and give you a thorough understanding of the language. You'll learn how to write programs, build modern APIs, and work with data by using renowned Python data science libraries. This revised edition covers the latest updates on API management, packaging applications, and testing. There is also broader coverage of context managers and an updated data science chapter. The book empowers you to take ownership of writing your software and become independent in fetching the resources you need. You will have a clear idea of where to go and how to build on what you have learned from the book. Through examples, the book explores a wide range of applications and concludes by building real-world Python projects based on the concepts you have learned.
Table of Contents (18 chapters)
16
Other Books You May Enjoy
17
Index

One last example

Before we finish this chapter, we'll show you a simple problem that Fabrizio used to submit to candidates for a Python developer role in a company he used to work for.

The problem is the following: write a function that returns the terms of the sequence 0 1 1 2 3 5 8 13 21 ..., up to some limit, N.

If you haven't recognized it, that is the Fibonacci sequence, which is defined as F(0) = 0, F(1) = 1 and, for any n > 1, F(n) = F(n-1) + F(n-2). This sequence is excellent for testing knowledge about recursion, memoization techniques, and other technical details, but in this case, it was a good opportunity to check whether the candidate knew about generators.

Let's start with a rudimentary version, and then improve on it:

# fibonacci.first.py
def fibonacci(N):
    """Return all fibonacci numbers up to N. """
    result = [0]
    next_n = 1
    while next_n <= N:
        result.append(next_n)
        next_n...