Book Image

Learn LLVM 17 - Second Edition

By : Kai Nacke, Amy Kwan
Book Image

Learn LLVM 17 - Second Edition

By: Kai Nacke, Amy Kwan

Overview of this book

LLVM was built to bridge the gap between the theoretical knowledge found in compiler textbooks and the practical demands of compiler development. With a modular codebase and advanced tools, LLVM empowers developers to build compilers with ease. This book serves as a practical introduction to LLVM, guiding you progressively through complex scenarios and ensuring that you navigate the challenges of building and working with compilers like a pro. The book starts by showing you how to configure, build, and install LLVM libraries, tools, and external projects. You’ll then be introduced to LLVM's design, unraveling its applications in each compiler stage: frontend, optimizer, and backend. Using a real programming language subset, you'll build a frontend, generate LLVM IR, optimize it through the pipeline, and generate machine code. Advanced chapters extend your expertise, covering topics such as extending LLVM with a new pass, using LLVM tools for debugging, and enhancing the quality of your code. You'll also focus on just-in-time compilation issues and the current state of JIT-compilation support with LLVM. Finally, you’ll develop a new backend for LLVM, gaining insights into target description and how instruction selection works. By the end of this book, you'll have hands-on experience with the LLVM compiler development framework through real-world examples and source code snippets.
Table of Contents (20 chapters)
1
Part 1: The Basics of Compiler Construction with LLVM
4
Part 2: From Source to Machine Code Generation
10
Part 3: Taking LLVM to the Next Level
14
Part 4: Roll Your Own Backend

Generating code with the LLVM backend

The task of the backend is to create optimized machine code from the LLVM IR of a module. The IR is the interface to the backend and can be created using a C++ interface or in textual form. Again, the IR is generated from the AST.

Textual representation of LLVM IR

Before trying to generate the LLVM IR, it should be clear what we want to generate. For our example expression language, the high-level plan is as follows:

  1. Ask the user for the value of each variable.
  2. Calculate the value of the expression.
  3. Print the result.

To ask the user to provide a value for a variable and to print the result, two library functions are used: calc_read() and calc_write(). For the with a: 3*a expression, the generated IR is as follows:

  1. The library functions must be declared, like in C. The syntax also resembles C. The type before the function name is the return type. The type names surrounded by parenthesis are the argument types...