Book Image

Learn LLVM 17 - Second Edition

By : Kai Nacke, Amy Kwan
Book Image

Learn LLVM 17 - Second Edition

By: Kai Nacke, Amy Kwan

Overview of this book

LLVM was built to bridge the gap between the theoretical knowledge found in compiler textbooks and the practical demands of compiler development. With a modular codebase and advanced tools, LLVM empowers developers to build compilers with ease. This book serves as a practical introduction to LLVM, guiding you progressively through complex scenarios and ensuring that you navigate the challenges of building and working with compilers like a pro. The book starts by showing you how to configure, build, and install LLVM libraries, tools, and external projects. You’ll then be introduced to LLVM's design, unraveling its applications in each compiler stage: frontend, optimizer, and backend. Using a real programming language subset, you'll build a frontend, generate LLVM IR, optimize it through the pipeline, and generate machine code. Advanced chapters extend your expertise, covering topics such as extending LLVM with a new pass, using LLVM tools for debugging, and enhancing the quality of your code. You'll also focus on just-in-time compilation issues and the current state of JIT-compilation support with LLVM. Finally, you’ll develop a new backend for LLVM, gaining insights into target description and how instruction selection works. By the end of this book, you'll have hands-on experience with the LLVM compiler development framework through real-world examples and source code snippets.
Table of Contents (20 chapters)
1
Part 1: The Basics of Compiler Construction with LLVM
4
Part 2: From Source to Machine Code Generation
10
Part 3: Taking LLVM to the Next Level
14
Part 4: Roll Your Own Backend

Throwing and catching exceptions

Exception handling in LLVM IR is closely tied to platform support. Here, we will look at the most common type of exception handling using libunwind. Its full potential is used by C++, so we will look at an example in C++ first, where the bar() function can throw an int or double value:

int bar(int x) {
  if (x == 1) throw 1;
  if (x == 2) throw 42.0;
  return x;
}

The foo() function calls bar(), but only handles a thrown int. It also declares that it only throws int values:

int foo(int x) {
  int y = 0;
  try {
    y = bar(x);
  }
  catch (int e) {
    y = e;
  }
  return y;
}

Throwing an exception requires two calls into the runtime library; this can be seen in the bar() function. First, memory for the exception is allocated with a call to __cxa_allocate_exception(). This function takes the number of bytes to allocate...