Book Image

Learn LLVM 17 - Second Edition

By : Kai Nacke, Amy Kwan
Book Image

Learn LLVM 17 - Second Edition

By: Kai Nacke, Amy Kwan

Overview of this book

LLVM was built to bridge the gap between the theoretical knowledge found in compiler textbooks and the practical demands of compiler development. With a modular codebase and advanced tools, LLVM empowers developers to build compilers with ease. This book serves as a practical introduction to LLVM, guiding you progressively through complex scenarios and ensuring that you navigate the challenges of building and working with compilers like a pro. The book starts by showing you how to configure, build, and install LLVM libraries, tools, and external projects. You’ll then be introduced to LLVM's design, unraveling its applications in each compiler stage: frontend, optimizer, and backend. Using a real programming language subset, you'll build a frontend, generate LLVM IR, optimize it through the pipeline, and generate machine code. Advanced chapters extend your expertise, covering topics such as extending LLVM with a new pass, using LLVM tools for debugging, and enhancing the quality of your code. You'll also focus on just-in-time compilation issues and the current state of JIT-compilation support with LLVM. Finally, you’ll develop a new backend for LLVM, gaining insights into target description and how instruction selection works. By the end of this book, you'll have hands-on experience with the LLVM compiler development framework through real-world examples and source code snippets.
Table of Contents (20 chapters)
1
Part 1: The Basics of Compiler Construction with LLVM
4
Part 2: From Source to Machine Code Generation
10
Part 3: Taking LLVM to the Next Level
14
Part 4: Roll Your Own Backend

Performance profiling with XRay

If your application seems to run slow, then you might want to know where the time is spent in the code. Here, instrumenting the code with XRay can assist with this task. Basically, at each function entry and exit, a special call is inserted into the runtime library. This allows you to count how often a function is called, and also how much time is spent in the function. You can find the implementation for the instrumentation pass in the llvm/lib/XRay/ directory. The runtime portion is part of compiler-rt.

In the following example source, real work is simulated by calling the usleep() function. The func1() function sleeps for 10 µs. The func2() function calls func1() or sleeps for 100 µs, depending on if the n parameter is odd or even. Inside the main() function, both functions are called inside a loop. This is already enough to get interesting information. You’ll need to save the following source code in the xraydemo.c file:

#include...