Book Image

Learn LLVM 17 - Second Edition

By : Kai Nacke, Amy Kwan
Book Image

Learn LLVM 17 - Second Edition

By: Kai Nacke, Amy Kwan

Overview of this book

LLVM was built to bridge the gap between the theoretical knowledge found in compiler textbooks and the practical demands of compiler development. With a modular codebase and advanced tools, LLVM empowers developers to build compilers with ease. This book serves as a practical introduction to LLVM, guiding you progressively through complex scenarios and ensuring that you navigate the challenges of building and working with compilers like a pro. The book starts by showing you how to configure, build, and install LLVM libraries, tools, and external projects. You’ll then be introduced to LLVM's design, unraveling its applications in each compiler stage: frontend, optimizer, and backend. Using a real programming language subset, you'll build a frontend, generate LLVM IR, optimize it through the pipeline, and generate machine code. Advanced chapters extend your expertise, covering topics such as extending LLVM with a new pass, using LLVM tools for debugging, and enhancing the quality of your code. You'll also focus on just-in-time compilation issues and the current state of JIT-compilation support with LLVM. Finally, you’ll develop a new backend for LLVM, gaining insights into target description and how instruction selection works. By the end of this book, you'll have hands-on experience with the LLVM compiler development framework through real-world examples and source code snippets.
Table of Contents (20 chapters)
1
Part 1: The Basics of Compiler Construction with LLVM
4
Part 2: From Source to Machine Code Generation
10
Part 3: Taking LLVM to the Next Level
14
Part 4: Roll Your Own Backend

Understanding the TableGen language

LLVM comes with its own domain-specific language (DSL) called TableGen. It is used to generate C++ code for a wide range of use cases, thus reducing the amount of code a developer has to produce. The TableGen language is not a full-fledged programming language. It is only used to define records, which is a fancy word for a collection of names and values. To understand why such a restricted language is useful, let’s examine two examples.

Typical data you need to define one machine instruction of a CPU is:

  • The mnemonic of the instruction
  • The bit pattern
  • The number and types of operands
  • Possible restrictions or side effects

It is easy to see that this data can be represented as a record. For example, a field named asmstring could hold the value of the mnemonic; say, "add". Also, a field named opcode could hold the binary representation of the instruction. Together, the record would describe an additional...