Book Image

Learn LLVM 17 - Second Edition

By : Kai Nacke, Amy Kwan
Book Image

Learn LLVM 17 - Second Edition

By: Kai Nacke, Amy Kwan

Overview of this book

LLVM was built to bridge the gap between the theoretical knowledge found in compiler textbooks and the practical demands of compiler development. With a modular codebase and advanced tools, LLVM empowers developers to build compilers with ease. This book serves as a practical introduction to LLVM, guiding you progressively through complex scenarios and ensuring that you navigate the challenges of building and working with compilers like a pro. The book starts by showing you how to configure, build, and install LLVM libraries, tools, and external projects. You’ll then be introduced to LLVM's design, unraveling its applications in each compiler stage: frontend, optimizer, and backend. Using a real programming language subset, you'll build a frontend, generate LLVM IR, optimize it through the pipeline, and generate machine code. Advanced chapters extend your expertise, covering topics such as extending LLVM with a new pass, using LLVM tools for debugging, and enhancing the quality of your code. You'll also focus on just-in-time compilation issues and the current state of JIT-compilation support with LLVM. Finally, you’ll develop a new backend for LLVM, gaining insights into target description and how instruction selection works. By the end of this book, you'll have hands-on experience with the LLVM compiler development framework through real-world examples and source code snippets.
Table of Contents (20 chapters)
1
Part 1: The Basics of Compiler Construction with LLVM
4
Part 2: From Source to Machine Code Generation
10
Part 3: Taking LLVM to the Next Level
14
Part 4: Roll Your Own Backend

Targeting a different CPU architecture

Today, many small computers, such as the Raspberry Pi, are in use despite having only limited resources. Running a compiler on such a computer is often not possible or it takes too much time. Thus, a common requirement for a compiler is to generate code for a different CPU architecture. The whole process of having a host compile an executable for a different target is called cross-compiling.

In cross-compiling, two systems are involved: the host system and the target system. The compiler runs on the host system and produces code for the target system. To denote the systems, the so-called triple is used. This is a configuration string that usually consists of the CPU architecture, the vendor, and the operating system. Furthermore, additional information about the environment is often added to the configuration string. For example, the x86_64-pc-win32 triple is used for a Windows system running on a 64-bit X86 CPU. The CPU architecture is x86_64...