Book Image

Learn LLVM 17 - Second Edition

By : Kai Nacke, Amy Kwan
Book Image

Learn LLVM 17 - Second Edition

By: Kai Nacke, Amy Kwan

Overview of this book

LLVM was built to bridge the gap between the theoretical knowledge found in compiler textbooks and the practical demands of compiler development. With a modular codebase and advanced tools, LLVM empowers developers to build compilers with ease. This book serves as a practical introduction to LLVM, guiding you progressively through complex scenarios and ensuring that you navigate the challenges of building and working with compilers like a pro. The book starts by showing you how to configure, build, and install LLVM libraries, tools, and external projects. You’ll then be introduced to LLVM's design, unraveling its applications in each compiler stage: frontend, optimizer, and backend. Using a real programming language subset, you'll build a frontend, generate LLVM IR, optimize it through the pipeline, and generate machine code. Advanced chapters extend your expertise, covering topics such as extending LLVM with a new pass, using LLVM tools for debugging, and enhancing the quality of your code. You'll also focus on just-in-time compilation issues and the current state of JIT-compilation support with LLVM. Finally, you’ll develop a new backend for LLVM, gaining insights into target description and how instruction selection works. By the end of this book, you'll have hands-on experience with the LLVM compiler development framework through real-world examples and source code snippets.
Table of Contents (20 chapters)
1
Part 1: The Basics of Compiler Construction with LLVM
4
Part 2: From Source to Machine Code Generation
10
Part 3: Taking LLVM to the Next Level
14
Part 4: Roll Your Own Backend

Implementing the assembler parser

The assembler parser is easy to implement, since LLVM provides a framework for it, and large parts are generated from the target description.

The ParseInstruction() method in our class is called when the framework detects that an instruction needs to be parsed. That method parses in input via the provided lexer and constructs a so-called operand vector. An operand can be a token such as an instruction mnemonic, a register name, or an immediate, or it can be category-specific to the target. For example, two operands are constructed from the jmp %r2 input: a token operand for the mnemonic, and a register operand.

Then a generated matcher tries to match the operand vector against the instructions. If a match is found, then an instance of the MCInst class is created, which holds the parsed instruction. Otherwise, an error message is emitted. The advantage of this approach is that it automatically derives the matcher from the target description, without...