Book Image

Learn LLVM 17 - Second Edition

By : Kai Nacke, Amy Kwan
Book Image

Learn LLVM 17 - Second Edition

By: Kai Nacke, Amy Kwan

Overview of this book

LLVM was built to bridge the gap between the theoretical knowledge found in compiler textbooks and the practical demands of compiler development. With a modular codebase and advanced tools, LLVM empowers developers to build compilers with ease. This book serves as a practical introduction to LLVM, guiding you progressively through complex scenarios and ensuring that you navigate the challenges of building and working with compilers like a pro. The book starts by showing you how to configure, build, and install LLVM libraries, tools, and external projects. You’ll then be introduced to LLVM's design, unraveling its applications in each compiler stage: frontend, optimizer, and backend. Using a real programming language subset, you'll build a frontend, generate LLVM IR, optimize it through the pipeline, and generate machine code. Advanced chapters extend your expertise, covering topics such as extending LLVM with a new pass, using LLVM tools for debugging, and enhancing the quality of your code. You'll also focus on just-in-time compilation issues and the current state of JIT-compilation support with LLVM. Finally, you’ll develop a new backend for LLVM, gaining insights into target description and how instruction selection works. By the end of this book, you'll have hands-on experience with the LLVM compiler development framework through real-world examples and source code snippets.
Table of Contents (20 chapters)
1
Part 1: The Basics of Compiler Construction with LLVM
4
Part 2: From Source to Machine Code Generation
10
Part 3: Taking LLVM to the Next Level
14
Part 4: Roll Your Own Backend

Getting the application binary interface right

With the addition of arrays and records to the code generator, you can note that sometimes, the generated code does not execute as expected. The reason is that we have ignored the calling conventions of the platform so far. Each platform defines its own rules on how one function can call another function in the same program or library. These rules are summarized in the ABI documentation. Typical information includes the following:

  • Are machine registers used for parameter passing? If yes, which ones?
  • How are aggregates such as arrays and structs passed to a function?
  • How are return values handled?

There is a wide variety in use. On some platforms, aggregates are always passed indirectly, meaning that a copy of the aggregate is placed on the stack and only a pointer to the copy is passed as a parameter. On other platforms, a small aggregate (say 128 or 256 bit wide) is passed in registers, and only above that threshold...