Book Image

Learn LLVM 17 - Second Edition

By : Kai Nacke, Amy Kwan
Book Image

Learn LLVM 17 - Second Edition

By: Kai Nacke, Amy Kwan

Overview of this book

LLVM was built to bridge the gap between the theoretical knowledge found in compiler textbooks and the practical demands of compiler development. With a modular codebase and advanced tools, LLVM empowers developers to build compilers with ease. This book serves as a practical introduction to LLVM, guiding you progressively through complex scenarios and ensuring that you navigate the challenges of building and working with compilers like a pro. The book starts by showing you how to configure, build, and install LLVM libraries, tools, and external projects. You’ll then be introduced to LLVM's design, unraveling its applications in each compiler stage: frontend, optimizer, and backend. Using a real programming language subset, you'll build a frontend, generate LLVM IR, optimize it through the pipeline, and generate machine code. Advanced chapters extend your expertise, covering topics such as extending LLVM with a new pass, using LLVM tools for debugging, and enhancing the quality of your code. You'll also focus on just-in-time compilation issues and the current state of JIT-compilation support with LLVM. Finally, you’ll develop a new backend for LLVM, gaining insights into target description and how instruction selection works. By the end of this book, you'll have hands-on experience with the LLVM compiler development framework through real-world examples and source code snippets.
Table of Contents (20 chapters)
1
Part 1: The Basics of Compiler Construction with LLVM
4
Part 2: From Source to Machine Code Generation
10
Part 3: Taking LLVM to the Next Level
14
Part 4: Roll Your Own Backend

Generating metadata for type-based alias analysis

Two pointers may point to the same memory cell, at which point they alias each other. Memory is not typed in the LLVM model, which makes it difficult for the optimizer to decide if two pointers alias each other or not. If the compiler can prove that two pointers do not alias each other, then more optimizations are possible. In the next section, we will have a closer look at the problem and investigate how adding additional metadata will help before we implement this approach.

Understanding the need for additional metadata

To demonstrate the problem, let’s look at the following function:

void doSomething(int *p, float *q) {
  *p = 42;
  *q = 3.1425;
}

The optimizer cannot decide if the pointers, p and q, point to the same memory cell or not. During optimization, an important analysis can be performed called alias analysis. If p and q point to the same memory cell, then they are aliases. Moreover...