Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Regularization

In the previous chapter, we learned about (deep) feedforward neural networks and how they are structured. We learned how these architectures can leverage their hidden layers and non-linear activations to learn to perform well on some very challenging tasks, which linear models aren't able to do. We also saw that neural networks tend to overfit to the training data by learning noise in the dataset, which leads to errors in the testing data. Naturally, since our goal is to create models that generalize well, we want to close the gap so that our models perform just as well on both datasets. This is the goal of regularization—to reduce test error, sometimes at the expense of greater training error.

In this chapter, we will cover a variety of methods used in regularization, how they work, and why certain techniques are preferred over others. This includes...