Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Gated recurrent units

Similar to the LSTM, GRUs are also an improvement on the hidden cells in vanilla RNNs. GRUs were also created to address the vanishing gradient problem by storing memory from the past to help make better future decisions. The motivation for the GRU stemmed from questioning whether all the components that are present in the LSTM are necessary for controlling the forgetfulness and time scale of units.

The main difference here is that this architecture uses one gating unit to decide what to forget and when to update the state, which gives it a more persistent memory.

In the following diagram, you can see what the GRU architecture looks like:

As you can see in the preceding diagram, it takes in the current input (Xt) and the previous hidden state (Ht-1), and there are a lot fewer operations that take place here in comparison to the preceding LSTM. It has the...