Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Polynomial regression

Linear regression, as you might imagine, isn't a one-size-fits-all solution that we can use for any problem. A lot of the relationships that exist between variables in the real world are not linear; that is, a straight line isn't able to capture the relationship. For these problems, we use a variant of the preceding linear regression known as polynomial regression, which can capture more complexities, such as curves. This method makes use of applying different powers to the explanatory variable to discover non-linear problems. This looks as follows:

Or, we could have the following:

This is the case for .

As you can see from the preceding equation, a model such as this is not only able to capture a straight line (if needed) but can also generate a second-order, third-order, or nth-order equation that fits the data points.

Let's suppose we...