Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Summary

In this chapter, we learned about some important mathematical topics, such as the difference between Euclidean and non-Euclidean data and manifolds. We then went on to learn about a few fascinating and emerging topics in the field of deep learning that have widespread applications in a plethora of domains in which traditional deep learning algorithms have proved to be ineffective. This new class of neural networks, known as graph neural networks, greatly expand on the usefulness of deep learning by extending it to work on non-Euclidean data. Toward the end of this chapter, we saw an example use case for graph neural networks—facial recognition in 3D.

This brings us to the end of this book. Congratulations on successfully completing the lessons that were provided!