Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Recurrent Neural Networks

In this chapter, we will take an in-depth look at Recurrent Neural Networks (RNNs). In the previous chapter, we looked at Convolutional Neural Networks (CNNs), which are a powerful class of neural networks for computer vision tasks because of their ability to capture spatial relationships. The neural networks we will be studying in this chapter, however, are very effective for sequential data and are used in applications such as algorithmic trading, image captioning, sentiment classification, language translation, video classification, and so on.

In regular neural networks, all the inputs and outputs are assumed to be independent, but in RNNs, each output is dependent on the previous one, which allows them to capture dependencies in sequences, such as in language, where the next word depends on the previous word and the one before that.

We will start...