Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Optimization

Optimization is a branch of applied mathematics that has applications in a multitude of fields, such as physics, engineering, economics, and so on, and is of vital importance in developing and training of deep neural networks. In this chapter, a lot of what we covered in previous chapters will be very relevant, particularly linear algebra and calculus.

As we know, deep neural networks are developed on computers and are, therefore, expressed mathematically. More often than not, training deep learning models comes down to finding the correct (or as close to the correct) set of parameters. We will learn more about this as we progress further through this book.

In this chapter, we'll mainly learn about two types of continuous optimization—constrained and unconstrained. However, we will also briefly touch on other forms of optimization, such as genetic algorithms...