Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Graph Theory

Now that we have got a taste of linear algebra, calculus, statistics, and optimization, it is time to move on to a very fascinating topic, known as graph theory. This involves, as the name suggests, the study of graphs, which we use to model relationships between objects. We use these graphs to help visualize and analyze problems, which in turn helps us solve them.

Graph theory is a very important field and is used for a variety of problems, including page ranking in search engines, social network analysis, and in a GPS to find the best route home. It is also important for us to further our understanding of deep neural networks since the majority of them are based on a type of graph known as a directed acyclic graph (DAG).

Covering everything in graph theory goes beyond the scope of this chapter (and this book), but we will cover everything that is important for...