Book Image

Mastering Malware Analysis

By : Alexey Kleymenov, Amr Thabet
Book Image

Mastering Malware Analysis

By: Alexey Kleymenov, Amr Thabet

Overview of this book

With the ever-growing proliferation of technology, the risk of encountering malicious code or malware has also increased. Malware analysis has become one of the most trending topics in businesses in recent years due to multiple prominent ransomware attacks. Mastering Malware Analysis explains the universal patterns behind different malicious software types and how to analyze them using a variety of approaches. You will learn how to examine malware code and determine the damage it can possibly cause to your systems to ensure that it won't propagate any further. Moving forward, you will cover all aspects of malware analysis for the Windows platform in detail. Next, you will get to grips with obfuscation and anti-disassembly, anti-debugging, as well as anti-virtual machine techniques. This book will help you deal with modern cross-platform malware. Throughout the course of this book, you will explore real-world examples of static and dynamic malware analysis, unpacking and decrypting, and rootkit detection. Finally, this book will help you strengthen your defenses and prevent malware breaches for IoT devices and mobile platforms. By the end of this book, you will have learned to effectively analyze, investigate, and build innovative solutions to handle any malware incidents.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamental Theory
3
Section 2: Diving Deep into Windows Malware
5
Unpacking, Decryption, and Deobfuscation
9
Section 3: Examining Cross-Platform Malware
13
Section 4: Looking into IoT and Other Platforms

Polymorphism

Inheritance allows one class to represent many different types of objects in what's called polymorphism. A Shape class can represent different subclasses, such as Line, Circle, Square, and others. A drawing application can loop through all Shape objects (regardless of their subclasses) and execute a paint() method to paint them on the screen or the program canvas without having to deal with each class separately.

Since the Shape class has the paint() method and each of its subclasses has its own implementation of it, it becomes much easier for the application to just execute the paint() method, regardless of its implementation.