Book Image

Mastering Malware Analysis

By : Alexey Kleymenov, Amr Thabet
Book Image

Mastering Malware Analysis

By: Alexey Kleymenov, Amr Thabet

Overview of this book

With the ever-growing proliferation of technology, the risk of encountering malicious code or malware has also increased. Malware analysis has become one of the most trending topics in businesses in recent years due to multiple prominent ransomware attacks. Mastering Malware Analysis explains the universal patterns behind different malicious software types and how to analyze them using a variety of approaches. You will learn how to examine malware code and determine the damage it can possibly cause to your systems to ensure that it won't propagate any further. Moving forward, you will cover all aspects of malware analysis for the Windows platform in detail. Next, you will get to grips with obfuscation and anti-disassembly, anti-debugging, as well as anti-virtual machine techniques. This book will help you deal with modern cross-platform malware. Throughout the course of this book, you will explore real-world examples of static and dynamic malware analysis, unpacking and decrypting, and rootkit detection. Finally, this book will help you strengthen your defenses and prevent malware breaches for IoT devices and mobile platforms. By the end of this book, you will have learned to effectively analyze, investigate, and build innovative solutions to handle any malware incidents.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamental Theory
3
Section 2: Diving Deep into Windows Malware
5
Unpacking, Decryption, and Deobfuscation
9
Section 3: Examining Cross-Platform Malware
13
Section 4: Looking into IoT and Other Platforms

Stack

Stack literally means a pile of objects. In computer science, a stack is basically a data structure that helps to save different values in memory with the same size in a pile structure using the principle of Last In First Out (LIFO).

The top of the stack (where the next element will be placed) is pointed by a dedicated stack pointer, which will be discussed in greater detail below.

A stack is common between many assembly languages and it has several functions. For example, it may help in solving mathematical equations, such as X = 5*6 + 6*2 + 7(4 + 6), by storing each calculated value and pushing each one in the stack, and later popping (or pulling) them back to calculate the sum of all of them and saving them in variable X.

It is also commonly used to pass arguments (especially if there are a lot of them) and store local variables.

A stack is also used to save the return addresses just before calling a function or a subroutine. So, after this routine finishes, it pops the return...