Book Image

Mastering Malware Analysis

By : Alexey Kleymenov, Amr Thabet
Book Image

Mastering Malware Analysis

By: Alexey Kleymenov, Amr Thabet

Overview of this book

With the ever-growing proliferation of technology, the risk of encountering malicious code or malware has also increased. Malware analysis has become one of the most trending topics in businesses in recent years due to multiple prominent ransomware attacks. Mastering Malware Analysis explains the universal patterns behind different malicious software types and how to analyze them using a variety of approaches. You will learn how to examine malware code and determine the damage it can possibly cause to your systems to ensure that it won't propagate any further. Moving forward, you will cover all aspects of malware analysis for the Windows platform in detail. Next, you will get to grips with obfuscation and anti-disassembly, anti-debugging, as well as anti-virtual machine techniques. This book will help you deal with modern cross-platform malware. Throughout the course of this book, you will explore real-world examples of static and dynamic malware analysis, unpacking and decrypting, and rootkit detection. Finally, this book will help you strengthen your defenses and prevent malware breaches for IoT devices and mobile platforms. By the end of this book, you will have learned to effectively analyze, investigate, and build innovative solutions to handle any malware incidents.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamental Theory
3
Section 2: Diving Deep into Windows Malware
5
Unpacking, Decryption, and Deobfuscation
9
Section 3: Examining Cross-Platform Malware
13
Section 4: Looking into IoT and Other Platforms

Basics

MIPS supports bi-endianness. The following registers are available:

  • 32 GPRs r0-r31, 32-bit size on MIPS32 and 64-bit size on MIPS64.
  • A special-purpose PC register that can be affected only indirectly by some instructions.
  • Two special-purpose registers to hold the results of integer multiplication and division (HI and LO). These registers and related instructions were removed from the base instruction set in the release of 6 and now exist in the Digital Signal Processor (DSP) module.

The reason behind 32 GPRs is simple—MIPS uses 5 bits to specify the register, so this way, we can have a maximum of 2^5 = 32 different values. Two of the GPRs have a particular purpose, as follows:

  • Register r0 (sometimes referred to as $0 or $zero) is a constant register and always stores zero, and provides read-only access. It can be used as a /dev/null analog to discard the output of some operation, or as a fast source of a zero value.
  • r31 (also known as $ra) stores the return address during...