Book Image

Mastering Malware Analysis

By : Alexey Kleymenov, Amr Thabet
Book Image

Mastering Malware Analysis

By: Alexey Kleymenov, Amr Thabet

Overview of this book

With the ever-growing proliferation of technology, the risk of encountering malicious code or malware has also increased. Malware analysis has become one of the most trending topics in businesses in recent years due to multiple prominent ransomware attacks. Mastering Malware Analysis explains the universal patterns behind different malicious software types and how to analyze them using a variety of approaches. You will learn how to examine malware code and determine the damage it can possibly cause to your systems to ensure that it won't propagate any further. Moving forward, you will cover all aspects of malware analysis for the Windows platform in detail. Next, you will get to grips with obfuscation and anti-disassembly, anti-debugging, as well as anti-virtual machine techniques. This book will help you deal with modern cross-platform malware. Throughout the course of this book, you will explore real-world examples of static and dynamic malware analysis, unpacking and decrypting, and rootkit detection. Finally, this book will help you strengthen your defenses and prevent malware breaches for IoT devices and mobile platforms. By the end of this book, you will have learned to effectively analyze, investigate, and build innovative solutions to handle any malware incidents.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamental Theory
3
Section 2: Diving Deep into Windows Malware
5
Unpacking, Decryption, and Deobfuscation
9
Section 3: Examining Cross-Platform Malware
13
Section 4: Looking into IoT and Other Platforms

Arithmetic statements

Now we will look at different C statements and how they are represented in the assembly. We will take Intel IA-32 as an example and the same concept applies to other assembly languages as well:

  • X = 50 (assuming 0x00010000 is the address of the X variable in memory):
mov eax, 50
mov dword ptr [00010000h],eax
  • X = Y+50 (assuming 0x00010000 represents X and 0x00020000 represents Y):
mov eax, dword ptr [00020000h]
add eax, 50
mov dword ptr [00010000h],eax
  • X = Y + (50 * 2):
mov eax, dword ptr [00020000h]
push eax ;save Y for now
mov eax, 50 ;do the multiplication first
mov ebx,2
imul ebx ;the result is in edx:eax
mov ecx, eax
pop eax ;gets back Y value
add eax,ecx
mov dword ptr [00010000h],eax
  • X = Y + (50 / 2):
mov eax, dword ptr [00020000h]
push eax ;save Y for now
mov eax, 50
mov ebx,2
div ebx ;the result in eax, and the remainder is in edx
mov ecx, eax
pop eax
add eax,ecx
mov dword ptr [00010000h],eax
  • X = Y + (50 % 2) (% represents the remainder):
mov eax...