Book Image

Mastering Malware Analysis

By : Alexey Kleymenov, Amr Thabet
Book Image

Mastering Malware Analysis

By: Alexey Kleymenov, Amr Thabet

Overview of this book

With the ever-growing proliferation of technology, the risk of encountering malicious code or malware has also increased. Malware analysis has become one of the most trending topics in businesses in recent years due to multiple prominent ransomware attacks. Mastering Malware Analysis explains the universal patterns behind different malicious software types and how to analyze them using a variety of approaches. You will learn how to examine malware code and determine the damage it can possibly cause to your systems to ensure that it won't propagate any further. Moving forward, you will cover all aspects of malware analysis for the Windows platform in detail. Next, you will get to grips with obfuscation and anti-disassembly, anti-debugging, as well as anti-virtual machine techniques. This book will help you deal with modern cross-platform malware. Throughout the course of this book, you will explore real-world examples of static and dynamic malware analysis, unpacking and decrypting, and rootkit detection. Finally, this book will help you strengthen your defenses and prevent malware breaches for IoT devices and mobile platforms. By the end of this book, you will have learned to effectively analyze, investigate, and build innovative solutions to handle any malware incidents.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamental Theory
3
Section 2: Diving Deep into Windows Malware
5
Unpacking, Decryption, and Deobfuscation
9
Section 3: Examining Cross-Platform Malware
13
Section 4: Looking into IoT and Other Platforms

The instruction set

The SH-4 features instruction set that is upward-compatible with the SH-1, SH-2, and SH-3 families. It uses 16-bit fixed length instructions in order to reduce the program code size. Except for BF and BT, all branch instructions and the RTE (return from exception instruction) implement so-called delayed branches, where the instruction following the branch is executed before the branch destination instruction.

All instructions are split into the following categories (with some examples):

  • Fixed-point transfer instructions:
    • MOV: Move data (or particular data types specified)
    • SWAP: Swap register halves
  • Arithmetic operation instructions:
    • SUB: Subtract binary numbers
    • CMP/EQ: Compare conditionally (in this case on equal to)
  • Logic operation instructions:
    • AND: AND logical
    • XOR: Exclusive OR logical
  • Shift instructions:
    • ROTL: Rotate left
    • SHLL: Shift logical left
  • Branch instructions:
    • BF: Branch if false
    • JMP: Jump (unconditional branch)
  • System control instructions...