Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By : Maxim Lapan
5 (2)
Book Image

Deep Reinforcement Learning Hands-On - Second Edition

5 (2)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
26
Other Books You May Enjoy
27
Index

Summary

In this chapter, you saw a quick overview of PyTorch's functionality and features. We talked about basic fundamental pieces, such as tensors and gradients, and you saw how an NN can be made from the basic building blocks, before learning how to implement those blocks yourself.

We discussed loss functions and optimizers, as well as the monitoring of training dynamics. Finally, you were introduced to PyTorch Ignite, a library used to provide a higher-level interface for training loops. The goal of the chapter was to give a very quick introduction to PyTorch, which will be used later in the book.

In the next chapter, we are ready to start dealing with the main subject of this book: RL methods.