Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By : Maxim Lapan
5 (2)
Book Image

Deep Reinforcement Learning Hands-On - Second Edition

5 (2)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
Other Books You May Enjoy

Supervised learning

You may be familiar with the notion of supervised learning, which is the most studied and well-known machine learning problem. Its basic question is, how do you automatically build a function that maps some input into some output when given a set of example pairs? It sounds simple in those terms, but the problem includes many tricky questions that computers have only recently started to address with some success. There are lots of examples of supervised learning problems, including the following:

  • Text classification: Is this email message spam or not?
  • Image classification and object location: Does this image contain a picture of a cat, dog, or something else?
  • Regression problems: Given the information from weather sensors, what will be the weather tomorrow?
  • Sentiment analysis: What is the customer satisfaction level of this review?

These questions may look different, but they share the same idea—we have many examples of input and...