Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization is an ideal companion guide to the Linux Kernel Programming book. This book provides a comprehensive introduction for those new to Linux device driver development and will have you up and running with writing misc class character device driver code (on the 5.4 LTS Linux kernel) in next to no time. You'll begin by learning how to write a simple and complete misc class character driver before interfacing your driver with user-mode processes via procfs, sysfs, debugfs, netlink sockets, and ioctl. You'll then find out how to work with hardware I/O memory. The book covers working with hardware interrupts in depth and helps you understand interrupt request (IRQ) allocation, threaded IRQ handlers, tasklets, and softirqs. You'll also explore the practical usage of useful kernel mechanisms, setting up delays, timers, kernel threads, and workqueues. Finally, you'll discover how to deal with the complexity of kernel synchronization with locking technologies (mutexes, spinlocks, and atomic/refcount operators), including more advanced topics such as cache effects, a primer on lock-free techniques, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this Linux kernel book, you'll have learned the fundamentals of writing Linux character device driver code for real-world projects and products.
Table of Contents (11 chapters)
1
Section 1: Character Device Driver Basics
3
User-Kernel Communication Pathways
5
Handling Hardware Interrupts
6
Working with Kernel Timers, Threads, and Workqueues
7
Section 2: Delving Deeper

Testing on a 5.4 non-debug distro kernel

As a contrasting test, we will now perform the very same thing on our Ubuntu 20.04 LTS VM, which we'll boot via its default generic 'distro' 5.4 Linux kernel that is typically not configured as a 'debug' kernel (here, the CONFIG_DEBUG_ATOMIC_SLEEP kernel config option hasn't been set).

First, we insert our (buggy) driver. Then, when we run our rdwr_drv_secret process in order to write the new secret to the driver, the buggy code path gets executed. However, this time, the kernel does not crash, nor does it report any issues at all (looking at the dmesg(1) output validates this):

$ uname -r
5.4.0-56-generic
$ sudo insmod ./miscdrv_rdwr_spinlock.ko buggy=1
$ ../../ch12/miscdrv_rdwr/rdwr_test_secret w /dev/llkd_miscdrv_rdwr_spinlock "passwdcosts500bucksdude"
Device file /dev/llkd_miscdrv_rdwr_spinlock opened (in write-only mode): fd=3
../../ch12/miscdrv_rdwr/rdwr_test_secret: wrote 24 bytes to...