Book Image

Interpretable Machine Learning with Python

By : Serg Masís
Book Image

Interpretable Machine Learning with Python

By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Chapter 5: Global Model-Agnostic Interpretation Methods

In the previous chapter, Chapter 4, Fundamentals of Feature Importance and Impact, we demonstrated how permutation feature importance was a better alternative to leveraging intrinsic model parameters for ranking features by their impact on model outcomes. We also learned how to employ partial dependence plots and individual conditional expectation plots to examine how model outcomes change across feature values and interactions. However, even though all these global model-agnostic methods are exceedingly popular, they have something in common – they are sensitive to collinear features.

This chapter will continue looking at global model-agnostic methods, two of which were designed to mostly mitigate multicollinearity's impact with a very robust statistical foundation. The first is SHapley Additive exPlanations (SHAP), which, mostly, adheres to Shapley values' mathematical principles derived from coalitional...