Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

Random Forests – A Long-Short Strategy for Japanese Stocks

In this chapter, we will learn how to use two new classes of machine learning models for trading: decision trees and random forests. We will see how decision trees learn rules from data that encode nonlinear relationships between the input and the output variables. We will illustrate how to train a decision tree and use it for prediction with regression and classification problems, visualize and interpret the rules learned by the model, and tune the model's hyperparameters to optimize the bias-variance trade-off and prevent overfitting.

Decision trees are not only important standalone models but are also frequently used as components in other models. In the second part of this chapter, we will introduce ensemble models that combine multiple individual models to produce a single aggregate prediction with lower prediction-error variance.

We will illustrate bootstrap aggregation, often called bagging, as...