Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

Word Embeddings for Earnings Calls and SEC Filings

In the two previous chapters, we converted text data into a numerical format using the bag-of-words model. The result is sparse, fixed-length vectors that represent documents in high-dimensional word space. This allows the similarity of documents to be evaluated and creates features to train a model with a view to classifying a document's content or rating the sentiment expressed in it. However, these vectors ignore the context in which a term is used so that two sentences containing the same words in a different order would be encoded by the same vector, even if their meaning is quite different.

This chapter introduces an alternative class of algorithms that use neural networks to learn a vector representation of individual semantic units like a word or a paragraph. These vectors are dense rather than sparse, have a few hundred real-valued entries, and are called embeddings because they assign each semantic unit a location...