Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning for Algorithmic Trading
  • Table Of Contents Toc
Machine Learning for Algorithmic Trading

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
4 (45)
close
close
Machine Learning for Algorithmic Trading

Machine Learning for Algorithmic Trading

4 (45)
By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
close
close
24
References
25
Index

RNNs for Multivariate Time Series and Sentiment Analysis

The previous chapter showed how convolutional neural networks (CNNs) are designed to learn features that represent the spatial structure of grid-like data, especially images, but also time series. This chapter introduces recurrent neural networks (RNNs) that specialize in sequential data where patterns evolve over time and learning typically requires memory of preceding data points.

Feedforward neural networks (FFNNs) treat the feature vectors for each sample as independent and identically distributed. Consequently, they do not take prior data points into account when evaluating the current observation. In other words, they have no memory.

The one- and two-dimensional convolutional filters used by CNNs can extract features that are a function of what is typically a small number of neighboring data points. However, they only allow shallow parameter-sharing: each output results from applying the same...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Machine Learning for Algorithmic Trading
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon