Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

Decision trees – learning rules from data

A decision tree is a machine learning algorithm that predicts the value of a target variable based on decision rules learned from data. The algorithm can be applied to both regression and classification problems by changing the objective function that governs how the tree learns the rules.

We will discuss how decision trees use rules to make predictions, how to train them to predict (continuous) returns as well as (categorical) directions of price movements, and how to interpret, visualize, and tune them effectively. See Rokach and Maimon (2008) and Hastie, Tibshirani, and Friedman (2009) for additional details and further background information.

How trees learn and apply decision rules

The linear models we studied in Chapter 7, Linear Models – From Risk Factors to Return Forecasts, and Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, learn a set of parameters to predict the outcome...