Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Priority inversion and the RT-mutex

A word of caution when using any kind of locking is that you should carefully design and code to prevent the dreaded deadlock scenarios that could arise (more on this in the next chapter in the The lock validator lockdep catch locking issues early section).

Aside from deadlocks, there is another risky scenario that arises when using the mutex: that of priority inversion (again, we will not delve into the details in this book). Suffice it to say that the unbounded priority inversion case can be a deadly one; the end result is that the product's high(est) priority thread is kept off the CPU for too long.

As I covered in some detail in my earlier book, Hands-on System Programming with Linux, it's precisely this priority inversion issue that struck NASA's Mars Pathfinder robot, on the Martian surface no less, back in July 1997! See the Further reading section of this chapter for&...