Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Frontends to view the process memory map

Besides the raw or direct format via /proc/PID/maps (which we saw how to interpret in the previous section), there are some wrapper utilities that help us more easily interpret the user-mode VAS. Among them are the additional (raw) /proc/PID/smaps pseudo-file, the pmap(1) and smem(8) utilities, and my own simple utility (christened procmap).

The kernel provides detailed information on each segment or mapping via the /proc/PID/smaps pseudo-file under proc. Do try cat /proc/self/smaps to see this for yourself. You will notice that for each segment (mapping), a good amount of detail information is provided on it. The man page on proc(5) helps explain the many fields seen. 

For both the pmap(1) and smem(8) utilities, I refer you to the man pages on them for details. For example, with pmap(1), the man page informs us of the more verbose -X and -XX options:

-X Show even...