Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Summary

This chapter, along with the previous one, covered in a lot of detail how to build the Linux kernel from source. We began with the actual kernel (and kernel modules') build process. Once built, we showed how the kernel modules are to be installed onto the system. We then moved on to both the practicalities of generating the initramfs (or initrd) image and went on to explain the motivation behind it. The final step in the kernel build was the (simple) customization of the bootloader (here, we focused only on x86 GRUB). We then showed how to boot the system via the newly baked kernel and verify that its configuration is as we expect. As a useful add-on, we then showed (the basics) of how we can even cross-compile the Linux kernel for another processor (ARM, in this instance). Finally, we shared some additional tips to help you with the kernel build.

Again, if you haven't done so already, we urge you to carefully review and try out the procedures mentioned here and build...