Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Understanding the basics of the boot process on the x86

In the following list, we provide a brief overview of the typical boot process on an x86[_64] desktop (or laptop), workstation, or server:

  1. Early boot, POST, BIOS initialization – the BIOS (short for Basic Input Output System; essentially, the firmware on the x86) loads up the first sector of the first bootable disk into RAM and jumps to its entry point. This forms what is often referred to as the stage one bootloader, whose main job is to load the stage two (larger) bootloader code into memory and jump to it.
  2. Now the stage two bootloader code takes control. Its main job is to load the actual (stage three) GRUB bootloader into memory and jump to its entry point (GRUB is typically the bootloader employed on x86[-64] systems)
  3. The (GRUB) bootloader will be passed both the compressed kernel image file (/boot/vmlinuz-<kernel-ver>) as well as the compressed initramfs image file (/boot/initrd.img-<kernel-ver...